
Efficient Tamper-Evident Data
Structures for Untrusted Servers

Dan S. Wallach
Rice University

Joint work with Scott A. Crosby

This talk vs. Preneel’s talks

•  Preneel: how hash functions work (or don’t
work)

•  This talk: interesting things you can build
with hash functions (assumption: “ideal”
hash functions)

This talk isn’t about…

•  BitCoin and other blockchain currencies

•  CA certificate revocation infrastructure

•  Voting system “public bulletin boards”

All of these systems are built
around similar hash-based
data structure primitives.

Problem

•  Lots of untrusted servers
– Outsourced

•  Backup services
•  Publishing services
•  Outsourced databases

–  Insiders
•  Financial records
•  Forensic records

– Hackers

Limitations and goals
•  Limitation

–  Untrusted server can do anything

•  Best we can do
–  Tamper evidence

•  Goal:
–  Tamper-evident primitives

•  Efficient
•  Secure

Tamper-evident primitives

•  Classic
– Merkle tree [Merkle 88]

– Digital signatures

•  More interesting ones
– Tamper-evident logs [Kelsey and Schneier 99]

– Authenticated dictionaries [Naor and Nissim 98]

– Graph and geometric searching [Goodrich et al 03]

– Searching XML documents [Devanbu et al 04]

Tamper-evident logging

•  Security model
– Mostly untrusted clients
– Untrusted log server
– Trusted auditors

•  Detect tampering

•  Useful for
– Election results
– Financial transactions
– General-purpose system logging

Authenticated dictionaries

•  Security model
– Data produced by trusted authors
– Stored on untrusted servers
– Fetched by clients

•  Key-value data store
•  Useful for

– Price lists
– Crypto key revocation
– DNS / other databases

Our research

•  Investigate two data structure problems
– Persistent authenticated dictionary (PAD)

•  Efficiency improves from O(log n) to O(1)

– Comprehensive PAD benchmarks
– Tamper-evident log

•  Efficiency improves from O(n) to O(log n)
•  Newer work on fast digital signatures

•  Code and papers online
http://tamperevident.cs.rice.edu

Tamper Evident Logging

Everyone has logs

Current solutions

•  ‘Write only’ hardware appliances
•  Security depends on correct operation

•  Would like cryptographic techniques
– Logger proves correct behavior
– Existing approaches too slow

Our solution

•  History tree
– Logarithmic for all operations
– Benchmarks at >1,750 events/sec
– Benchmarks at >8,000 audits/sec
(on 2007 hardware!)

•  In addition
– Propose new threat model
– Demonstrate the importance of auditing

Threat model

•  Strong insider attacks
– Malicious administrator

•  Evil logger
– Users collude with administrator

•  Prior threat model
– Forward integity [Bellare et al 99]

– Log tamper evident up to (unknown point),
and untrusted thereafter

System design
•  Logger

–  Stores events
–  Never trusted

•  Clients
–  Little storage
–  Create events to be logged
–  Trusted only at time of event creation
–  Sends commitments to auditors

•  Auditors
–  Verify correct operation
–  Little storage
–  Trusted, at least one is honest

Client

Client

Client

Auditor

Auditor

Logger

Hash chain log

•  Existing approach [Kelsey and Schneier 98]
– Cn=H(Cn-1 || Xn)
– Logger signs Cn

Xn-5 Xn-4 Xn-3

Cn-3

Hash chain log

•  Existing approach [Kelsey,Schneier]
– Cn=H(Cn-1 || Xn)
– Logger signs Cn

Xn-5 Xn-4 Xn-3 Xn-2

Cn-2

Hash chain log

•  Existing approach [Kelsey,Schneier]
– Cn=H(Cn-1 || Xn)
– Logger signs Cn

Xn-5 Xn-4 Xn-3 Xn-2 Xn-1

Cn-1

Problem

•  We don’t trust the logger!

Cn

Cn-2 Cn-1

Logger returns a stream of commitments

Each corresponds to a log

Cn

Xn-4 Xn-3 Xn-2 Xn-1 Xn

Problem

•  We don’t trust the logger!

Cn

Cn-2 Cn-1

Xn Does really contain the just inserted

Do and really commit the same historical events?

?

Cn Xi Is the event at index i in log really ?

Cn

Xn-4 Xn-3 Xn-2 Xn-1 Xn

Solution

•  Auditors check the returned commitments
– For consistency
– For correct event lookup

•  Previously
– Auditing = looking at historical events

•  Assumed to infrequent
•  Performance was ignored

Cn-2 Cn-1 ≡
Cn-3 Xn-3 ∈

Auditing is a frequent operation

•  If the logger knows this commitment will not be
audited for consistency with a later commitment.

X’n-3 Xn-2 Xn-1

C’n-1

Xn-6 Xn-4 Xn-3

Cn-3

Xn-5

Auditing is a frequent operation
•  Successfully tampered with a ‘tamper evident’ log

X’n-3 Xn-2 Xn-1

C’n-1

Xn-6 Xn-4 Xn-3

Cn-3

Xn-5

Auditing is a frequent operation

•  Every commitment must have a non-zero
chance of being audited

X’n-3 Xn-2 Xn-1

C’n-1

Xn-4 Xn-3

Cn-3

Xn-5 Xn-6

New paradigm
•  Auditing cannot be avoided

•  Audits should occur
–  On every event insertion
–  Between commitments returned by logger

•  How to make inserts and audits cheap
–  CPU
–  Communications complexity
–  Storage

Two kinds of audits

Ci Cn ≡

•  Membership auditing
– Verify proper insertion
– Lookup historical events

•  Incremental auditing
– Prove consistency between two commitments

Cn Xi ∈

Existing tamper evident log designs

•  Hash chain [Kelsey and Schneier 98]
– Auditing is linear time
– Historical lookups

•  Very inefficient

•  Skiplist history [Maniatis and Baker 02]

– Auditing is still linear time
– O(log n) historical lookups

Our solution

•  History tree
– O(log n) instead of O(n) for all operations
– Variety of useful features

•  Write-once append-only storage format
•  Predicate queries + safe deletion
•  May probabilistically detect tampering

–  Auditing random subset of events
– Not beneficial for skip-lists or hash chains

History tree

•  Merkle binary tree
– Events stored on leaves
– Logarithmic path length

•  Random access
– Permits reconstruction of past version and

past commitments

History tree

X1

C2

X2

History tree

X1 X2 X3

C3

History tree

X1 X2 X3 X4

C4

History tree

X1 X2 X3 X4 X5

C5

History tree

X1 X2 X3 X4 X5 X6

C6

History tree

X1 X2 X3 X4 X5 X7 X6

C7

History tree

X1 X2 X3 X4 X5 X7 X6

Incremental auditing

Auditor

X1 X2 X3

C3 C3

Auditor

X1 X2 X3 X4

C4

C3

Auditor

X1 X2 X3 X4 X5

C5

C3

Auditor

X1 X2 X3 X4 X5 X6

C6

C3

Auditor

X1 X2 X3 X4 X5 X7 X6

C7

C3

C7

Incremental proof ≡

X1 X2 X3 X4 X5 X7 X6

Auditor
C3

C7

C7 C3

C7

C3

Incremental proof ≡

•  P is consistent with
•  P is consistent with
•  Therefore and are consistent.

X1 X2 X3 X4 X5 X7 X6

C7

C3

C7 C3

Auditor
C3

C7 C7

C3

C7 C3

Auditor

Incremental proof ≡

•  P is consistent with
•  P is consistent with
•  Therefore and are consistent.

X1 X2 X3 X4 X5 X7 X6

C7

C3

C7 C3

C3

C7 C7

C3

C7 C3

Auditor

Incremental proof ≡

•  P is consistent with
•  P is consistent with
•  Therefore and are consistent.

X1 X2 X3 X4 X5 X7 X6

C3

C7 C7

C3

C7

C3

C7 C3

C7 C3

Incremental proof ≡

•  P is consistent with
•  P is consistent with
•  Therefore and are consistent.

X1 X2 X3 X4 X5 X7 X6

Auditor
C3

C7 C7

C3

C7

C3

C7 C3

C7 C3

Pruned subtrees

X1 X2 X3 X4 X5 X7 X6

•  Although not sent to auditor
– Fixed by hashes above them
–  , fix the same (unknown) events C7 C3

Auditor
C3

C7 C7

C3

Membership proof that

X1 X2 X3 X4 X5 X7 X6

C’’7

•  Verify that has the same contents as P
•  Read out event

C’’7

X3

∈ C’’7 X3

Evaluating the history tree

•  Big-O performance
•  Syslog implementation

Big-O performance

Cj Ci ≡ Cj Xi ∈ Insert

History tree O(log n) O(log n)

O(log n)

Hash chain
(e.g., BitCoin)

O(j-i) O(j-i)

O(1)

Skip-list history
[Maniatis and Baker]

O(j-i)
or O(n)

O(log n)
or O(n)

O(1)

Syslog implementation

•  Syslog
– Trace from Rice CS departmental servers
– 4M events, 11 hosts over 4 days, 5 attributes

per event
•  Repeated 20 times to create 80M event trace

Syslog implementation

•  Implementation
–  Hybrid C++ and Python
–  Single threaded
–  mmap()-based append-only write-once storage
–  1024-bit DSA signatures and 160-bit SHA-1 hashes

•  Test platform
–  2.4 GHz Core 2 Duo (circa 2007) desktop machine
–  4GB RAM

Performance

•  Insert performance: 1,750 events/sec
– 83.3% : Sign commitment

•  Auditing performance
– With locality (last 5M events)

•  10,000-18,000 incremental proofs/sec
•  8,600 membership proofs/sec

– Without locality
•  30 membership proofs/sec

– < 4,000 byte self-contained proof size

Tamper-evident logging

•  New paradigm
–  Importance of frequent auditing

•  History tree
– Efficient auditing
– Scalable
– Offers other features

– Proofs and more in the papers

Persistent authenticated
dictionaries (PADs)

What is a PAD?

What is a PAD?
•  What is an authenticated dictionary?

– Tamper-evident key/value data store
–  Invented for storing CRLs [Naor and Nissim 98]

•  Security model
– Created by trusted author
– Stored on untrusted server
– Accessed by clients

•  Responses authenticated by author’s signature

•  PAD adds the ability to access old versions
–  [Anagnostopoulos et al 01]

PAD design
Author

Insert(key,val)

Server
PAD

Repository

Remove(key)
Snapshot()

LookupV(version,key) Result, Lookup Proof
Assume a single author

Clients

PAD
Generator

Signed
Stuff

Time per update
Size of update
Storage per update
Size of a proof

Assume snapshot after every update

Applications of PADs

•  Outsource storage and publishing
– CRL
– Cloud computing
– Remote backups
– Subversion repository
– Stock ticker
– Software updates
– Smart cards

•  Want to look up historical data

PAD Designs

•  Tree-based PADs [Anagnostopoulos et al., Crosby and Wallach]
– O(log n) storage per update
– O(log n) lookup proof size

•  Tuple PADS [Crosby and Wallach]

– O(1) storage per update
– O(1) proof size

Tree-based authenticated
dictionary

R

“ZZZ”

“Hello”

“Comp”
“World”

“Sci”

Proofs in a tree-based
authenticated dictionary

R

“ZZZ”

“Hello”

“Comp”
“World”

“Sci”

Proof: Hashes of sibling
nodes on path to lookup key

Path copying

“Hello”

“Comp”
“World”

“Sci”

R0 R1 R2 R3 R4 R5

“ZZZ”

“Hello”

“World”

Storage: O(log n) per update

Building a PAD

•  Other ways to make trees persistent
– Versioned nodes [Sarnak and Tarjan 86]

•  O(1) amortized storage per update.

– Our contribution:
•  Combining versioned nodes with authenticated

dictionaries
•  Reduce memory consumption on the server

Sarnak-Tarjan tree

0

R

S

1 2

T=2

5

T
T=5

V

6

R

E

R

3 4

T=4

Note: 7 snapshots represented with 7 nodes.

Add R
Add S
Del S
Add T
Add V
Add E

Accessing snapshot 5

0

R

S

1 2

T=2

5

T
T=5

V

6

R

E

R

3 4

T=4 Add R
Add S
Del S
Add T
Add V
Add E

Sarnak-Tarjan node

•  Each node has two sets of
children pointers and a
“time”

•  Hash is not constant
–  Can be recomputed from

tree at any “time”
•  Storing vs. recomputing

–  Same semantics, different
performance

R

S

1 2

T=2

Comparing caching strategies

Storage Lookup
Proof
Generation

(Server)

(Server)

Cache
nowhere

O(1)

O(n)

Cache
everywhere

O(log n)

O((log n)
 *(log v))

Cache
median layer

O(2)

O(√n * (log v))

•  Logarithmic
–  Update time
–  Lookup size
–  Verification time

•  Constant
–  Update size

Tuple PADs

•  Our new PAD design
– Constant lookup proof size
– Constant storage per update

•  Dictionary contents:
–  { k1 = c1, k2 = c2, k3 = c3, k4 = c4 }

•  Divide key-space into intervals
•  Tuples:

–  ([MIN,k1),■)
–  ([k1,k2),c1)
–  ([k2,k3),c2)
–  ([k3,k4),c3)
–  ([k4,MAX),c4)

Tuple PADs

“Key k1 has value c1, and there is no
key in the dictionary between k1 and k2”

Making it persistent

•  (v1,[k1,k2),c1)
–  “In snapshot v1, key k1 has value c1, and there

is no key in the dictionary between k1 and k2”

Observation

•  Most tuples stay same between snapshots
•  Every update

– Creates ≤ 2 tuples not in prior snapshot

Tuple superseding

•  Indicate a version range in each tuple
–  ([v1,v2+1], [k1,k2),c1)

•  Which replaces ([v1,v2], [k1,k2),c1)
•  At most 2 new tuples. Rest are replaced

– Constant
•  Storage on server

– Still have the same
•  Update time
•  Update size

Insight: Speculation

•  Split PAD
– Speculative tuples

•  Older generation
•  Signed in every epoch

– Young generation
•  Correct mis-speculations
•  Signed every snapshot
•  Kept small, migrate keys into older generation

•  O(G n1/G) signatures per update
– Combines with lightweight signatures

Speculation: Updating the PAD

Old generation g1 Young generation g0

•  (g0,[v1,v2],[k1,k2),c1)
–  “In generation g0 and snapshots v1 through v2 key k1 has value

c1, and there is no key in the dictionary between k1 and k2”

Reducing update costs

•  Currently O(G n1/G) update size
–  Requiring O(G n1/G) work

•  RSA accumulators [Benaloh and de Mare 93]

–  O(1)
•  Work on author
•  Update size
•  Lookup proof size

–  O((G+1) n1/G (log n))
•  Computation on server
•  Large constant factors

Tree-based Tuple-based

Path
Copying

Cache
Everywhere

Cache
Median

Speculating+
Superseding

Superseding Accumulators
+ Speculating

Updates Time
(Author)

O(log n) O(G * n1/G) O(n)

O(1)

Time
(Server)

O(G * log(n)
* n1/G)

Size

O(1) Storage (per
update) O(log n) O(1) O(G) O(1)

Lookup Time
(Server) O(log n)

O(log n *
 log v) O(√n) O(G * log n) O(log n)

Size
O(log n) O(G) O(1)

Comparing techniques

Tree-based Tuple-based

Path
Copying

Cache
Everywhere

Cache
Median

Speculating+
Superseding

Superseding Accumulators
+ Speculating

Updates Time
(Author)

O(log n) O(G * n1/G) O(n)

O(1)

Time
(Server)

O(G * log(n)
* n1/G)

Size

O(1) Storage (per
update) O(log n) O(1) O(G) O(1)

Lookup Time
(Server) O(log n)

O(log n *
 log v)

O(√n) O(G * log
n) O(log n)

Size O(log n) O(G) O(1)

What about the real world?

Benchmarking PADs

Comprehensive implementation

•  21 algorithms
•  Including all earlier designs

– Path copy skiplists and path copy red-black
trees [Anagnostopoulos et al.]

•  Analysis also applies to non-persistent
authenticated dictionaries

Algorithms

•  Tree PADs – 12 designs
–  (4) Path copying, 3 caching strategies
–  (3) Red-black, Treap, and Skiplist

•  Tuple PADs – 6 algorithms
–  (2) With and without speculation
–  (3) No-superseding, superseding, lightweight

signatures
•  Accumulator PADs – 3 algorithms

Implementation

•  Hybrid of Python and C++
– GMP for bignum arithmatic
– OpenSSL for signatures

•  Core 2 Duo CPU at 2.4 GHz
– 4GB of RAM
– 64-bit mode
(Not bad for circa 2007 hardware!)

Benchmark

•  ‘Growing benchmark’
–  Insert 10,000 keys with a snapshot after every

insert
•  Play a trace of price changes of luxury

goods
– 27 snapshots
– 14000 keys
– 39000 updates

Tree PADs

•  Comparing algorithms
– Red-black

•  Smallest proofs, least RAM, highest performance
– Skiplists do the worst

•  Comparing repositories
– Path copying
– Sarnak-Tarjan nodes cache everywhere

•  Same performance
•  40% of the RAM

Cache median vs Cache everywhere

•  100,000 keys

Update
Size

Update
Rate

Lookup
Size

Lookup
Rate

Memory
usage

Cache
median

.15kb 730/sec 1.5kb 196/sec 205MB

Cache
everywhere

.15kb 730/sec 1.5kb 7423/sec 358MB

The costs of an algorithm

•  Care about the monetary costs
•  Use prices from cloud computing providers

–  In 2007, 200kb was worth 1sec of CPU time
•  Worth about $.000030 = 3000µ¢

$$$

Monetary analysis

•  Evaluate
– Absolute costs per operation

•  CPU time and bandwidth

– Relative contribution of
•  CPU
•  Bandwidth

Tree PAD caching strategies
•  37x slower, but only costs 2x as much

–  Sending a lookup reply
•  1.5kb, costing 18µ¢

–  Generating a lookup reply
•  Cache median: 5ms, costing 16µ¢
•  Cache everywhere .13ms : .4µ¢

Lookup
size

Lookup
rate

Cost per
lookup

Memory
usage

Cache
median

1.5kb 196/sec 34 µ¢ 205MB

Cache
everywhere

1.5kb 7423/sec 18 µ¢

358MB

Evaluating the monetary costs of
updates and lookups

•  Tuple PADs
–  Extremely cheap lookups
–  Expensive updates

•  Tree PADs
–  Cheap lookups
–  Cheap updates

“What is the cost per lookup if there are k lookups for
each update for different values of k.”

Costs per lookup on growing
benchmark

These results

•  Could not be presented without looking at
costs of bandwidth and CPU time

•  Constant factors matter

•  Accumulators
– Lookup proof >1kb

•  Just as big as red-black
– Expensive updates

PAD designs

•  Presented
– New PAD designs

•  Improved tree PAD designs
•  New tuple PAD designs

– Constant storage and constant sized lookup proofs

– Comprehensive evaluation of PAD designs
•  Monetary analysis

•  Focused on efficiency and the real-world

Conclusion

•  Presented two tamper evident algorithms
– New PAD designs

•  Comprehensive evaluation
•  Monetary analysis

– Tamper-evident history
•  New extensions for fast digital signatures

•  Focused on efficiency in the real-world
•  Code and technical reports

http://tamperevident.cs.rice.edu

