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This talk vs. Preneel’s talks 

•  Preneel: how hash functions work (or don’t 
work) 

•  This talk: interesting things you can build 
with hash functions (assumption: “ideal” 
hash functions) 



This talk isn’t about… 

•  BitCoin and other blockchain currencies 

•  CA certificate revocation infrastructure 

•  Voting system “public bulletin boards” 

All of these systems are built 
around similar hash-based 
data structure primitives. 



Problem 

•  Lots of untrusted servers 
– Outsourced 

•  Backup services 
•  Publishing services 
•  Outsourced databases 

–  Insiders 
•  Financial records 
•  Forensic records 

– Hackers 



Limitations and goals 
•  Limitation 

–  Untrusted server can do anything 

•  Best we can do 
–  Tamper evidence 

•  Goal: 
–  Tamper-evident primitives 

•  Efficient 
•  Secure 



Tamper-evident primitives 

•  Classic 
– Merkle tree [Merkle 88] 

– Digital signatures 

•  More interesting ones 
– Tamper-evident logs [Kelsey and Schneier 99] 

– Authenticated dictionaries [Naor and Nissim 98] 

– Graph and geometric searching [Goodrich et al 03] 

– Searching XML documents [Devanbu et al 04] 



Tamper-evident logging 

•  Security model 
– Mostly untrusted clients 
– Untrusted log server 
– Trusted auditors 

•  Detect tampering 

•  Useful for 
– Election results 
– Financial transactions 
– General-purpose system logging 



Authenticated dictionaries 

•  Security model 
– Data produced by trusted authors 
– Stored on untrusted servers 
– Fetched by clients 

•  Key-value data store 
•  Useful for 

– Price lists 
– Crypto key revocation 
– DNS / other databases 



Our research 

•  Investigate two data structure problems 
– Persistent authenticated dictionary (PAD) 

•  Efficiency improves from O(log n) to O(1) 

– Comprehensive PAD benchmarks 
– Tamper-evident log 

•  Efficiency improves from O(n) to O(log n) 
•  Newer work on fast digital signatures 

•  Code and papers online 
http://tamperevident.cs.rice.edu 



Tamper Evident Logging 



Everyone has logs 



Current solutions 

•  ‘Write only’ hardware appliances 
•  Security depends on correct operation 

•  Would like cryptographic techniques 
– Logger proves correct behavior 
– Existing approaches too slow 



Our solution 

•  History tree 
– Logarithmic for all operations 
– Benchmarks at >1,750 events/sec 
– Benchmarks at >8,000 audits/sec 
(on 2007 hardware!) 

•  In addition 
– Propose new threat model 
– Demonstrate the importance of auditing 



Threat model 

•  Strong insider attacks 
– Malicious administrator 

•  Evil logger 
– Users collude with administrator 

•  Prior threat model 
– Forward integity [Bellare et al 99] 

– Log tamper evident up to (unknown point), 
and untrusted thereafter 



System design 
•  Logger 

–  Stores events 
–  Never trusted 

•  Clients 
–  Little storage 
–  Create events to be logged 
–  Trusted only at time of event creation 
–  Sends commitments to auditors 

•  Auditors 
–  Verify correct operation 
–  Little storage 
–  Trusted, at least one is honest 

Client 

Client 

Client 

Auditor 

Auditor 

Logger 



Hash chain log 

•  Existing approach [Kelsey and Schneier 98] 
– Cn=H(Cn-1 || Xn) 
– Logger signs Cn 

Xn-5 Xn-4 Xn-3 

Cn-3 



Hash chain log 

•  Existing approach [Kelsey,Schneier] 
– Cn=H(Cn-1 || Xn) 
– Logger signs Cn 

Xn-5 Xn-4 Xn-3 Xn-2 

Cn-2 



Hash chain log 

•  Existing approach [Kelsey,Schneier] 
– Cn=H(Cn-1 || Xn) 
– Logger signs Cn 

Xn-5 Xn-4 Xn-3 Xn-2 Xn-1 

Cn-1 



Problem 

•  We don’t trust the logger! 

Cn 

Cn-2 Cn-1 

Logger returns a stream of commitments 

Each corresponds to a log 

Cn 

Xn-4 Xn-3 Xn-2 Xn-1 Xn 



Problem 

•  We don’t trust the logger! 

Cn 

Cn-2 Cn-1 

Xn Does really contain the just inserted 

Do and really commit the same historical events? 

? 

Cn Xi Is the event at index i in log really ? 

Cn 

Xn-4 Xn-3 Xn-2 Xn-1 Xn 



Solution   

•  Auditors check the returned commitments 
– For consistency 
– For correct event lookup 

•  Previously 
– Auditing = looking at historical events 

•  Assumed to infrequent 
•  Performance was ignored 

Cn-2 Cn-1 ≡ 
Cn-3 Xn-3 ∈



Auditing is a frequent operation 

•  If the logger knows this commitment will not be 
audited for consistency with a later commitment. 

X’n-3 Xn-2 Xn-1 

C’n-1 

Xn-6 Xn-4 Xn-3 

Cn-3 

Xn-5 



Auditing is a frequent operation 
•  Successfully tampered with a ‘tamper evident’ log 

X’n-3 Xn-2 Xn-1 

C’n-1 

Xn-6 Xn-4 Xn-3 

Cn-3 

Xn-5 



Auditing is a frequent operation 

•  Every commitment must have a non-zero 
chance of being audited 

X’n-3 Xn-2 Xn-1 

C’n-1 

Xn-4 Xn-3 

Cn-3 

Xn-5 Xn-6 



New paradigm 
•  Auditing cannot be avoided 

•  Audits should occur 
–  On every event insertion 
–  Between commitments returned by logger 

•  How to make inserts and audits cheap 
–  CPU 
–  Communications complexity 
–  Storage 



Two kinds of audits 

Ci Cn ≡ 

•  Membership auditing 
– Verify proper insertion 
– Lookup historical events 

•  Incremental auditing 
– Prove consistency between two commitments 

Cn Xi ∈ 



Existing tamper evident log designs 

•  Hash chain [Kelsey and Schneier 98] 
– Auditing is linear time 
– Historical lookups 

•  Very inefficient 

•  Skiplist history [Maniatis and Baker 02] 

– Auditing is still linear time 
– O(log n) historical lookups 



Our solution 

•  History tree 
– O(log n) instead of O(n) for all operations 
– Variety of useful features 

•  Write-once append-only storage format 
•  Predicate queries + safe deletion 
•  May probabilistically detect tampering  

–  Auditing random subset of events 
– Not beneficial for skip-lists or hash chains 



History tree 

•  Merkle binary tree 
– Events stored on leaves 
– Logarithmic path length 

•  Random access 
– Permits reconstruction of past version and 

past commitments 



History tree 

X1 

C2 

X2 



History tree 

X1 X2 X3 

C3 



History tree 

X1 X2 X3 X4 

C4 



History tree 

X1 X2 X3 X4 X5 

C5 



History tree 

X1 X2 X3 X4 X5 X6 

C6 



History tree 

X1 X2 X3 X4 X5 X7 X6 

C7 



History tree 

X1 X2 X3 X4 X5 X7 X6 



Incremental auditing 



Auditor 

X1 X2 X3 

C3 C3 



Auditor 

X1 X2 X3 X4 

C4 

C3 



Auditor 

X1 X2 X3 X4 X5 

C5 

C3 



Auditor 

X1 X2 X3 X4 X5 X6 

C6 

C3 



Auditor 

X1 X2 X3 X4 X5 X7 X6 

C7 

C3 

C7 



Incremental proof      ≡ 

X1 X2 X3 X4 X5 X7 X6 

Auditor 
C3 

C7 

C7 C3 

C7 

C3 



Incremental proof      ≡ 

•  P is consistent with  
•  P is consistent with  
•  Therefore      and      are consistent. 

X1 X2 X3 X4 X5 X7 X6 

C7 

C3 

C7 C3 
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Incremental proof      ≡ 
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Incremental proof      ≡ 

•  P is consistent with  
•  P is consistent with  
•  Therefore      and      are consistent. 

X1 X2 X3 X4 X5 X7 X6 

Auditor 
C3 

C7 C7 

C3 

C7 

C3 

C7 C3 

C7 C3 



Pruned subtrees 

X1 X2 X3 X4 X5 X7 X6 

•  Although not sent to auditor 
– Fixed by hashes above them 
–       ,      fix the same (unknown) events C7 C3 

Auditor 
C3 

C7 C7 

C3 



Membership proof that             

X1 X2 X3 X4 X5 X7 X6 

C’’7 

•  Verify that      has the same contents as P 
•  Read out event 

C’’7 

X3 

∈ C’’7 X3 



Evaluating the history tree 

•  Big-O performance 
•  Syslog implementation 



Big-O performance 

Cj Ci ≡ Cj Xi ∈ Insert 

History tree O(log n) O(log n) 
 

O(log n) 

Hash chain 
(e.g., BitCoin) 

O(j-i) O(j-i) 
 

O(1) 

Skip-list history 
[Maniatis and Baker] 

O(j-i)  
or O(n) 

O(log n) 
or O(n) 

O(1) 



Syslog implementation 

•  Syslog 
– Trace from Rice CS departmental servers 
– 4M events, 11 hosts over 4 days, 5 attributes 

per event 
•  Repeated 20 times to create 80M event trace 



Syslog implementation 

•  Implementation 
–  Hybrid C++ and Python 
–  Single threaded 
–  mmap()-based append-only write-once storage 
–  1024-bit DSA signatures and 160-bit SHA-1 hashes 

•  Test platform 
–  2.4 GHz Core 2 Duo (circa 2007) desktop machine 
–  4GB RAM 



Performance 

•  Insert performance: 1,750 events/sec 
– 83.3% : Sign commitment 

•  Auditing performance 
– With locality (last 5M events) 

•  10,000-18,000 incremental proofs/sec 
•  8,600 membership proofs/sec 

– Without locality 
•  30 membership proofs/sec 

– < 4,000 byte self-contained proof size 



Tamper-evident logging 

•  New paradigm 
–  Importance of frequent auditing 

•  History tree 
– Efficient auditing 
– Scalable 
– Offers other features 

– Proofs and more in the papers 



Persistent authenticated 
dictionaries (PADs) 



What is a PAD? 



What is a PAD? 
•  What is an authenticated dictionary? 

– Tamper-evident key/value data store 
–  Invented for storing CRLs [Naor and Nissim 98] 

•  Security model 
– Created by trusted author 
– Stored on untrusted server 
– Accessed by clients 

•  Responses authenticated by author’s signature 

•  PAD adds the ability to access old versions 
–  [Anagnostopoulos et al 01] 



PAD design 
Author 

Insert(key,val) 

Server 
PAD 

Repository 

Remove(key) 
Snapshot() 

LookupV(version,key) Result, Lookup Proof 
Assume a single author 

Clients 

PAD 
Generator 

Signed  
Stuff 

Time per update 
Size of update 
Storage per update 
Size of a proof 

Assume snapshot after every update 



Applications of PADs 

•  Outsource storage and publishing 
– CRL 
– Cloud computing 
– Remote backups 
– Subversion repository 
– Stock ticker 
– Software updates 
– Smart cards 

•  Want to look up historical data 



PAD Designs 

•  Tree-based PADs [Anagnostopoulos et al., Crosby and Wallach] 
– O(log n) storage per update 
– O(log n) lookup proof size 

•  Tuple PADS [Crosby and Wallach] 

– O(1) storage per update 
– O(1) proof size  



Tree-based authenticated 
dictionary 

R 

“ZZZ” 

“Hello” 

“Comp” 
“World” 

“Sci” 



Proofs in a tree-based 
authenticated dictionary 

R 

“ZZZ” 

“Hello” 

“Comp” 
“World” 

“Sci” 

Proof: Hashes of sibling 
nodes on path to lookup key 



Path copying 

“Hello” 

“Comp” 
“World” 

“Sci” 

R0 R1 R2 R3 R4 R5 

“ZZZ” 

“Hello” 

“World” 

Storage: O(log n) per update 



Building a PAD 

•  Other ways to make trees persistent 
– Versioned nodes [Sarnak and Tarjan 86] 

•  O(1) amortized storage per update.  

– Our contribution: 
•  Combining versioned nodes with authenticated 

dictionaries 
•  Reduce memory consumption on the server 



Sarnak-Tarjan tree 

0 

R 

S 

1 2 

T=2 

5 

T 
T=5 

V 

6 

R 

E 

R 

3 4 

T=4 

Note: 7 snapshots represented with 7 nodes. 

Add R 
Add S 
Del S 
Add T 
Add V 
Add E 



Accessing snapshot 5 

0 

R 

S 

1 2 

T=2 

5 

T 
T=5 

V 

6 

R 

E 

R 

3 4 

T=4 Add R 
Add S 
Del S 
Add T 
Add V 
Add E 



Sarnak-Tarjan node 

•  Each node has two sets of 
children pointers and a 
“time” 

•  Hash is not constant 
–  Can be recomputed from 

tree at any “time” 
•  Storing vs. recomputing 

–  Same semantics, different 
performance 

R 

S 

1 2 

T=2 



Comparing caching strategies 

Storage Lookup 
Proof 
Generation 

(Server) 
 

(Server) 
 

Cache  
nowhere 

O(1) 
 

O(n) 
 

Cache  
everywhere 

O(log n) 
 

O((log n) 
   *(log v)) 

Cache  
median layer 

O(2) 
 

O(√n * (log v)) 

•  Logarithmic 
–  Update time 
–  Lookup size 
–  Verification time 

•  Constant 
–  Update size 



Tuple PADs 

•  Our new PAD design 
– Constant lookup proof size 
– Constant storage per update 



•  Dictionary contents: 
–  {  k1 = c1,  k2 = c2, k3 = c3, k4 = c4 } 

•  Divide key-space into intervals 
•  Tuples: 

–  ([MIN,k1),■) 
–  ([k1,k2),c1) 
–  ([k2,k3),c2) 
–  ([k3,k4),c3) 
–  ([k4,MAX),c4) 

Tuple PADs 

“Key k1 has value c1, and there is no 
key in the dictionary between k1 and k2” 

 



Making it persistent 

•  (v1,[k1,k2),c1)  
–  “In snapshot v1, key k1 has value c1, and there 

is no key in the dictionary between k1 and k2” 



Observation 

•  Most tuples stay same between snapshots 
•  Every update 

– Creates ≤ 2 tuples not in prior snapshot 



Tuple superseding 

•  Indicate a version range in each tuple 
–  ([v1,v2+1], [k1,k2),c1)  

•  Which replaces ([v1,v2], [k1,k2),c1) 
•  At most 2 new tuples. Rest are replaced  

– Constant 
•  Storage on server 

– Still have the same 
•  Update time 
•  Update size  



Insight: Speculation 

•  Split PAD 
– Speculative tuples 

•  Older generation 
•  Signed in every epoch 

– Young generation 
•  Correct mis-speculations 
•  Signed every snapshot 
•  Kept small, migrate keys into older generation 

•  O(G n1/G) signatures per update 
– Combines with lightweight signatures 



Speculation: Updating the PAD 

Old generation g1 Young generation g0 

•  (g0,[v1,v2],[k1,k2),c1)  
–  “In generation g0 and snapshots v1 through v2 key k1 has value 

c1, and there is no key in the dictionary between k1 and k2” 



Reducing update costs 

•  Currently O(G n1/G) update size 
–  Requiring O(G n1/G) work 

•  RSA accumulators [Benaloh and de Mare 93] 

–  O(1) 
•  Work on author 
•  Update size 
•  Lookup proof size 

–  O((G+1) n1/G (log n)) 
•  Computation on server 
•  Large constant factors 



Tree-based Tuple-based 

Path 
Copying 

Cache 
Everywhere 

Cache 
Median 

Speculating+ 
Superseding 

Superseding Accumulators
+ Speculating 

Updates Time 
(Author) 

O(log n) O(G * n1/G) O(n) 

O(1) 

Time 
(Server) 

O(G * log(n) 
* n1/G) 

Size 

O(1) Storage (per 
update) O(log n) O(1) O(G) O(1) 

Lookup Time 
(Server) O(log n) 

O(log n * 
    log v) O(√n) O(G * log n) O(log n) 

Size 
O(log n) O(G) O(1) 

Comparing techniques 



Tree-based Tuple-based 

Path 
Copying 

Cache 
Everywhere 

Cache 
Median 

Speculating+ 
Superseding 

Superseding Accumulators
+ Speculating 

Updates Time 
(Author) 

O(log n) O(G * n1/G) O(n) 

O(1) 

Time 
(Server) 

O(G * log(n) 
* n1/G) 

Size 

O(1) Storage (per 
update) O(log n) O(1) O(G) O(1) 

Lookup Time 
(Server) O(log n) 

O(log n * 
    log v) 

O(√n) O(G * log 
n) O(log n) 

Size O(log n) O(G) O(1) 

What about the real world? 



Benchmarking PADs 



Comprehensive implementation 

•  21 algorithms 
•  Including all earlier designs 

– Path copy skiplists and path copy red-black 
trees [Anagnostopoulos et al.] 

•  Analysis also applies to non-persistent 
authenticated dictionaries 



Algorithms 

•  Tree PADs – 12 designs 
–  (4) Path copying, 3 caching strategies 
–  (3) Red-black, Treap, and Skiplist 

•  Tuple PADs – 6 algorithms 
–  (2) With and without speculation 
–  (3) No-superseding, superseding, lightweight 

signatures 
•  Accumulator PADs – 3 algorithms 



Implementation 

•  Hybrid of Python and C++ 
– GMP for bignum arithmatic 
– OpenSSL for signatures 

•  Core 2 Duo CPU at 2.4 GHz 
– 4GB of RAM 
– 64-bit mode 
(Not bad for circa 2007 hardware!) 



Benchmark 

•  ‘Growing benchmark’ 
–  Insert 10,000 keys with a snapshot after every 

insert 
•  Play a trace of price changes of luxury 

goods 
– 27 snapshots 
– 14000 keys 
– 39000 updates 



Tree PADs 

•  Comparing algorithms 
– Red-black 

•  Smallest proofs, least RAM, highest performance 
– Skiplists do the worst 

•  Comparing repositories 
– Path copying 
– Sarnak-Tarjan nodes cache everywhere 

•  Same performance 
•  40% of the RAM 



Cache median vs Cache everywhere  

•  100,000 keys 

Update 
Size 

Update 
Rate 

Lookup 
Size 

Lookup 
Rate 

Memory 
usage 

Cache 
median 

.15kb 730/sec 1.5kb 196/sec 205MB 

Cache 
everywhere 

.15kb 730/sec 1.5kb 7423/sec 358MB 



The costs of an algorithm 

•  Care about the monetary costs 
•  Use prices from cloud computing providers 

–  In 2007, 200kb was worth 1sec of CPU time 
•  Worth about $ .000030 = 3000µ¢ 

$$$ 



Monetary analysis 

•  Evaluate 
– Absolute costs per operation 

•  CPU time and bandwidth  

– Relative contribution of  
•  CPU 
•  Bandwidth 
 



Tree PAD caching strategies 
•  37x slower, but only costs 2x as much 

–  Sending a lookup reply 
•  1.5kb, costing  18µ¢ 

–  Generating a lookup reply 
•  Cache median: 5ms, costing 16µ¢ 
•  Cache everywhere .13ms : .4µ¢ 

Lookup 
size 

Lookup 
rate 

Cost per 
lookup 

Memory 
usage 

Cache 
median 

1.5kb 196/sec 34 µ¢ 205MB 

Cache 
everywhere 

1.5kb 7423/sec 18 µ¢ 
 

358MB 



Evaluating the monetary costs of 
updates and lookups 

•  Tuple PADs 
–  Extremely cheap lookups 
–  Expensive updates 

•  Tree PADs 
–  Cheap lookups 
–  Cheap updates 

“What is the cost per lookup if there are k lookups for 
each update for different values of k.” 



Costs per lookup on growing 
benchmark 



These results 

•  Could not be presented without looking at 
costs of bandwidth and CPU time 

•  Constant factors matter 

•  Accumulators 
– Lookup proof >1kb 

•  Just as big as red-black 
– Expensive updates 



PAD designs 

•  Presented 
– New PAD designs 

•  Improved tree PAD designs 
•  New tuple PAD designs  

– Constant storage and constant sized lookup proofs 

– Comprehensive evaluation of PAD designs 
•  Monetary analysis 

•  Focused on efficiency and the real-world 



Conclusion 

•  Presented two tamper evident algorithms 
– New PAD designs 

•  Comprehensive evaluation 
•  Monetary analysis 

– Tamper-evident history 
•  New extensions for fast digital signatures 

•  Focused on efficiency in the real-world 
•  Code and technical reports 

http://tamperevident.cs.rice.edu 


